Page last updated: 2024-12-09

[9-(4-ethoxyphenyl)sulfonyl-2,3-dihydro-[1,4]dioxino[2,3-g]quinolin-8-yl]-(4-methylphenyl)methanone

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

The compound you've described, **[9-(4-ethoxyphenyl)sulfonyl-2,3-dihydro-[1,4]dioxino[2,3-g]quinolin-8-yl]-(4-methylphenyl)methanone**, is a complex organic molecule. It's quite challenging to definitively state its importance for research without further context. However, we can analyze its structure and draw some inferences about its potential applications.

**Structural Analysis:**

* **Core Structure:** The core structure contains a quinoline ring system fused with a dioxane ring. This structural motif is commonly found in drugs with a variety of biological activities.
* **Substitutions:** The molecule is substituted with a sulfonyl group, an ethoxy group, and a benzoyl group. These substitutions can significantly influence the molecule's properties, including its solubility, reactivity, and biological activity.

**Potential Research Significance:**

* **Pharmaceutical Research:** The presence of the quinoline and dioxane rings suggests potential pharmaceutical applications. Quinolines are known for their antimicrobial and anti-inflammatory activities, while dioxanes are often found in anti-cancer agents. The sulfonyl group is also a common feature in drugs, often contributing to enhanced activity or better pharmacokinetic properties.
* **Materials Science:** The aromatic rings and various functional groups could make this compound interesting for materials science applications. For example, it might possess properties suitable for organic electronics or as a component in polymer synthesis.

**Overall, it is impossible to definitively state the specific importance of this compound for research without more context. The information provided is insufficient to determine whether it's a known compound with established applications, a newly synthesized molecule with potential applications, or a theoretical structure under investigation.**

**To understand its importance, you would need to consider:**

* **The specific research area:** What is the research focus? Is it drug discovery, materials science, or something else?
* **The context of its synthesis or discovery:** How was the compound made? What was the goal of the researchers?
* **Its biological or chemical activity:** Has it been tested for any specific activity? Does it possess any unique properties?

**In summary, while the compound's structure hints at potential research applications, a more detailed understanding of its context is required to accurately assess its importance.**

Cross-References

ID SourceID
PubMed CID2151453
CHEMBL ID1578859
CHEBI ID105449

Synonyms (13)

Synonym
smr000236830
MLS000418861
CHEBI:105449
AKOS001859539
[9-(4-ethoxyphenyl)sulfonyl-2,3-dihydro-[1,4]dioxino[2,3-g]quinolin-8-yl]-(4-methylphenyl)methanone
HMS2557H11
(9-((4-ethoxyphenyl)sulfonyl)-2,3-dihydro-[1,4]dioxino[2,3-g]quinolin-8-yl)(p-tolyl)methanone
F1607-0589
866895-82-1
9-(4-ethoxybenzenesulfonyl)-8-(4-methylbenzoyl)-2h,3h-[1,4]dioxino[2,3-g]quinoline
CHEMBL1578859
HMS3444D08
Q27183183
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (2)

ClassDescription
quinolinesA class of aromatic heterocyclic compounds each of which contains a benzene ring ortho fused to carbons 2 and 3 of a pyridine ring.
aromatic ketoneA ketone in which the carbonyl group is attached to an aromatic ring.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (16)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, Ferritin light chainEquus caballus (horse)Potency28.18385.623417.292931.6228AID485281
Chain A, CruzipainTrypanosoma cruziPotency6.30960.002014.677939.8107AID1476
ClpPBacillus subtilisPotency15.84891.995322.673039.8107AID651965
chaperonin-containing TCP-1 beta subunit homologHomo sapiens (human)Potency177.82803.981127.764939.8107AID504842
aldehyde dehydrogenase 1 family, member A1Homo sapiens (human)Potency22.38720.011212.4002100.0000AID1030
nonstructural protein 1Influenza A virus (A/WSN/1933(H1N1))Potency14.12540.28189.721235.4813AID2326
bromodomain adjacent to zinc finger domain 2BHomo sapiens (human)Potency1.77830.707936.904389.1251AID504333
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1Homo sapiens (human)Potency31.62280.001815.663839.8107AID894
importin subunit beta-1 isoform 1Homo sapiens (human)Potency112.20205.804836.130665.1308AID540263
snurportin-1Homo sapiens (human)Potency112.20205.804836.130665.1308AID540263
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1Homo sapiens (human)Potency37.93300.425612.059128.1838AID504891
muscleblind-like protein 1 isoform 1Homo sapiens (human)Potency31.62280.00419.962528.1838AID2675
histone acetyltransferase KAT2A isoform 1Homo sapiens (human)Potency19.95260.251215.843239.8107AID504327
lamin isoform A-delta10Homo sapiens (human)Potency3.98110.891312.067628.1838AID1487
Guanine nucleotide-binding protein GHomo sapiens (human)Potency22.38721.995325.532750.1187AID624287
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Other Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
glycogen synthase kinase-3 alphaHomo sapiens (human)AC50300.00000.013529.7434171.7000AID463203
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (5)

Processvia Protein(s)Taxonomy
negative regulation of inflammatory response to antigenic stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
renal water homeostasisGuanine nucleotide-binding protein GHomo sapiens (human)
G protein-coupled receptor signaling pathwayGuanine nucleotide-binding protein GHomo sapiens (human)
regulation of insulin secretionGuanine nucleotide-binding protein GHomo sapiens (human)
cellular response to glucagon stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (2)

Processvia Protein(s)Taxonomy
G protein activityGuanine nucleotide-binding protein GHomo sapiens (human)
adenylate cyclase activator activityGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (1)

Processvia Protein(s)Taxonomy
plasma membraneGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (13)

Assay IDTitleYearJournalArticle
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID1745845Primary qHTS for Inhibitors of ATXN expression
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (5)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's1 (20.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.56

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.56 (24.57)
Research Supply Index1.79 (2.92)
Research Growth Index4.36 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.56)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]